
TP	7	des	architectures	logicielles	
Séance	7	:	Architecture	Multi-Agents 

	

	

JChoc	 is	 a	multi-agent	platform	 for	 solving	Distributed	Constraints	Reasoning	 (DCR)	
problems.	It	was	written	in	Java	and	it’s	available	as	a	Java	(.jar)	library.	

The	Distributed	Meeting	Scheduling	Problem	(DisMSP)	is	a	truly	distributed	problem	
where	 agents	may	not	 desire	 to	 deliver	 their	 personal	 information	 to	 a	 centralized	
agent	to	solve	the	whole	problem.	

Let’s	consider	an	example	of	DisMSP	and	solve	it	with	JChoc.	

	

Figure	1	:	The	distributed	meeting-scheduling	problem	modeled	as	DisCSP	

	

Figure	1	shows	four	agents	where	each	agent	has	a	personal	private	calendar	and	a	set	of	meetings	
each	taking	place	in	a	specified	location.	Thus	we	get	the	following	DisCSP:	

• A	=	{A1,	A2,	A3,	A4}	each	agent	Ai	corresponds	to	a	real	agent.	
• For	each	agent	Ai∈A	there	is	a	variable	mik,	for	every	meeting	mk	that	Ai	attends,	

X	=	{m11,	m13,	m14,	m21,	m22,	m32,	m33,	m34,	m44}.	
• D	=	{D(mik)	|mik∈X}	where,	

- D(m11)	=	D(m13)	=	D(m14)	=	{s	|s	is	a	slot	in	calendar	(A1)}.	
- D(m21)	=	D(m22)	=	{s	|s	is	a	slot	in	calendar	(A2)}.	



- D(m32)	=	D(m33)	=	D(m34)	=	{s	|s	is	a	slot	in	calendar	(A3)}.	
- D(m44)	=	{s	|s	is	a	slot	in	calendar	(A4)}.	

• For	each	agent	Ai,	there	is	a	private	arrival-time	constraint	(cikl)	between	every	pair	of	
its	local	variables	(mik,	mil).	For	each	two	agents	Ai,	Aj	that	attend	the	same	meeting	
mk	there	is	an	equality	inter-agent	constraint	(cijk)	between	the	variables	mik	and	mjk,	corresponding	to	
the	meeting	mk	on	agent	Ai	and	Aj.	Then,	C	=	{	cikl,	cijk}.	
	

Step	1:	Start	a	Master	that	can	detect	the	silence	in	the	network	and	inform	the	other	
agents	of	the	end	of	solving.	

- Create	a	new	java	project	
- Import	JChoc.jar	file	in	your	project	library	
- Create	a	Class	“Master.Java”,	then	follow	the	following	steps:	

	

	

Figure	2:	Class	Master.java	

	
Ø Step	1:	Import	DisSolver	class	from	the	JChoc	package	
Ø Step	2:	Add	a	main	method	in	the	Master	class	
Ø Step	3:	Instantiate	a	DisSolver	object	
Ø Step	 4:	 Choose	 the	 type	 of	 the	Master	 that	 you	 went	 to	 use:	 in	 the	

example,	 we	 chose	 to	 use	 an	 ABT	 master,	 in	 other	 words,	 ABT	
(Asynchronous	BackTracking)	as	solving	protocol.	

Ø Step	5:	Add	the	number	of	agents	to	use.	
Ø Step	6:	Choose	to	display	the	GUI	or	not.	
Ø Step	7:	Call	the	run	method	to	start	the	multi-agent	Platform	JChoc.	

- Create	and	start	Agents:	
Ø Each	agent	can	code	his	part	of	the	whole	problem	and	put	it	in	a	xml	file.	



	

Figure	3:	Example	of	the	XML	file	in	the	JChoc	Platform	for	the	MSP	problem	

Figure	3	describes	a	part	of	the	whole	problem	affected	to	Agent	3.	



b) If	 we	 use	machines,	 we	 can	 create	 a	 new	 class	 for	 each	 agent	 and	 add	 the	
following	lines	by	modifying	the	arguments	depending	on	the	problem	to	solve.	

	

Figure	4:	Class	Agent	

Ø Step	1:	Import	DisSolver	class	from	JChoc	package	
Ø Step	2:	Add	the	main	method	in	the	agent	class	
Ø Step	3:	Instantiate	a	DisSolver	object	
Ø Step	4:	Choose	the	type	of	the	agent	that	you	went	to	use:	in	the	example	

we	chose	to	use	an	ABT	agent	and	automatically	we	will	use	ABT	protocol	
to	communicate	and	solve	the	whole	problem.	

Ø Step	5:	Set	agent	arguments:	
• Name	of	agent.	
• His	XML	file	
• Show	the	GUI	or	not	(true/false).	

Ø Step	6:	IP	of	Machine	where	we	started	the	Master.	
Ø Step	7:	Call	the	run	method	to	start	the	agent.	

Or	we	can	use	Android	devices	to	run	agents	and	solve	the	problem;	this	is	the	mobile	
interface	using	the	same	steps	to	run	the	A1	agent:	



	


