TP 7 des architectures logicielles
Séance 7 : Architecture Multi-Agents

JChoc is a multi-agent platform for solving Distributed Constraints Reasoning (DCR)
problems. It was written in Java and it’s available as a Java (.jar) library.

The Distributed Meeting Scheduling Problem (DisMSP) is a truly distributed problem
where agents may not desire to deliver their personal information to a centralized
agent to solve the whole problem.

Let’s consider an example of DisMSP and solve it with JChoc.

Mamaﬁoﬁ c A4

June 2014 : June 2014
010203 04 0508 07 H 01020304 050607 |

080910111213 14 08091011 121314 |

L

June 2014

010203 04 05 06 07
080910 11121314 |

L

Figure 1 : The distributed meeting-scheduling problem modeled as DisCSP

Figure 1 shows four agents where each agent has a personal private calendar and a set of meetings
each taking place in a specified location. Thus we get the following DisCSP:
* A ={A1, A2, A3, As} each agent A corresponds to a real agent.
* For each agent A;€A there is a variable m;, for every meeting m,that A; attends,
X = {m11, m13, m14, m21, m22, m32, M33, m34, Ma44}.
* D ={D(mj) | mikEX} where,
- D(my) =D(my) =D(m.) ={s |sis a slot in calendar (A1)}.
- D(my) =D(my) ={s |sis aslotin calendar (A2)}.

D(ms,) = D(m.:) = D(m.) = {s | s is a slot in calendar (A3)}.
D(m.) = {s |sis a slot in calendar (A4)}.

* For each agent Aj, there is a private arrival-time constraint (c) between every pair of

its local variables (mijk, m;j). For each two agents Ai, Ajthat attend the same meeting

my there is an equality inter-agent constraint (cijk) between the variables mjcand mji, corresponding to

the meeting mgon agent Aiand Aj. Then, C={ ' cijk}.

Step 1: Start a Master that can detect the silence in the network and inform the other

agents of the end of solving.

- Create a new java project

- Import JChoc.jar file in your project library

- Create a Class “Master.Java”, then follow the following steps:

YV V V V

>
>
>

[J] Masterjava &2

2 import JChoc. DisSolver;o

public class Master {

[V, QRN SN Y

public static void main(String[] args) e

8 DisSolver js= new DisSolver(); e
9 js.setType("MasterABT")

10 js.setNumberOfAgents(4);

11 js.setGui(true)

12 js.run();o

Figure 2: Class Master.java

Step 1: Import DisSolver class from the JChoc package

Step 2: Add a main method in the Master class

Step 3: Instantiate a DisSolver object

Step 4: Choose the type of the Master that you went to use: in the
example, we chose to use an ABT master, in other words, ABT
(Asynchronous BackTracking) as solving protocol.

Step 5: Add the number of agents to use.

Step 6: Choose to display the GUI or not.

Step 7: Call the run method to start the multi-agent Platform JChoc.

- Create and start Agents:

>

Each agent can code his part of the whole problem and put it in a xml file.

<?xml version="1.8" encoding="UTF-8"?>
<instance>
<domains nbDomains="1">
<domain name="D1" nbValues="7">1..7</domain>
</domains>

<variables nbVariables="3">
<variable name="M3.2" id="1" domain="D1" description="M_2" />
<variable name="M3.3" id="2" domain="D1" description="M_3" />
<variable name="M3.4" id="1" domain="DI1" description="p 4" />
</variables>

<constraints nbConstraints="3">
<constraint model="TKC" name="C@" reference="ArrivalTime" scope="M3.2 M3.3 2" arity="2">
<parameters>M3.2 M3.3 2</parameters>
</constraint>
<constraint model="TKC" name="C1" reference="ArrivalTime" scope="M3.3 M3.4 2" arity="2">
<parameters>M3.3 M3.4 2</parameters>
</constraint>
<constraint model="TKC" name="C2" reference="ArrivalTime" scope="M3.2 M3.4 2" arity="2">
<parameters>M3.2 M3.4 2</parameters>
</constraint>
</constraints>

<predicates nbPredicates="2">
<predicate name="ArrivalTime">

<parameters>i| = M, i -e</parameters>
<expression>
<functional>ge(abs(sub(Mi,Mj)), cte)</functional>
</expression>
</predicate>

<predicate name="egqg">

</expression>
</predicate>
</predicates>

<agents_neighbours>
<agents_parent>
<agent name="A1">
<constraints nbConstraints="2">
<constraint model="TKC" name="C@" reference="eq" scope="MI1.4 M3.4" arity="2">
<parameters>M1.4 M3.4</parameters>
</constraint>
<constraint model="TKC" name="C1" reference="eq" scope="MI1.3 M3.3" arity="2">
<parameters>M1.3 M3.3</parameters>
</constraint>
</constraints>
</agent>
<agent name="A2">
<constraints nbConstraints="1">
<constraint model="TKC" name="C@" reference="eq"
scope="PM2.2 M3.2" arity="2">
<parameters>M2.2 M3.2</parameters>
</constraint>
</constraints>
</agent>
</agents_parent>
<agents_children>
<agent name="A4" id="5" variable="M3.4" />
</agents_children>
</agents_neighbours>
</instance>

Figure 3: Example of the XML file in the JChoc Platform for the MSP problem

Figure 3 describes a part of the whole problem affected to Agent 3.

b) If we use machines, we can create a new class for each agent and add the

followi

YV V V V

>
>

ng lines by modifying the arguments depending on the problem to solve.

1 1import JChoc.DisSolver; 0
public class Jean
{

] O 0 Wb W

public static void main(String[] args {9
DisSolver jsl = new DisSo er();é
jsl.setType ("AgentABT") ;
jsl.addAgent ("A2", "Problem2.xml",true, true);
jsl.setContainer("192.168.1.37");

- jsl.run():e

w

Figure 4: Class Agent

Step 1: Import DisSolver class from JChoc package
Step 2: Add the main method in the agent class
Step 3: Instantiate a DisSolver object
Step 4: Choose the type of the agent that you went to use: in the example
we chose to use an ABT agent and automatically we will use ABT protocol
to communicate and solve the whole problem.
Step 5: Set agent arguments:
* Name of agent.
* His XML file
* Show the GUI or not (true/false).
Step 6: IP of Machine where we started the Master.
Step 7: Call the run method to start the agent.

Or we can use Android devices to run agents and solve the problem; this is the mobile
interface using the same steps to run the Al agent:

Agent's name :

IP of Master :

AgentABT

Problem1.xml

Al

192.168.1.21

Connect and solve

y

Select problem's file

